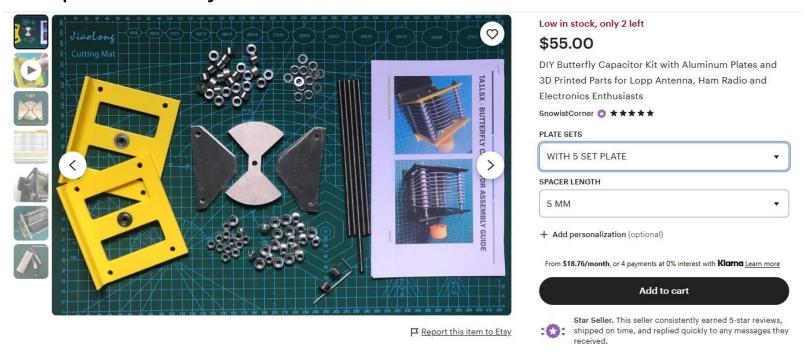


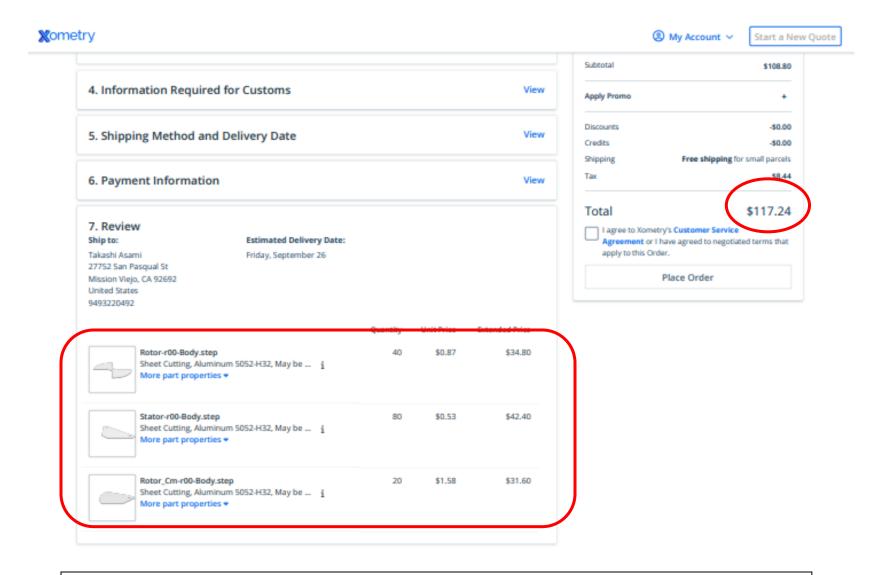
Making of Combination Variable Capacitor for Desktop MLA


MLA48 Southern California Branch Record of Struggle

W6SI / Tak Asami
10/25/2025
(Revised and Translated)

Motivation

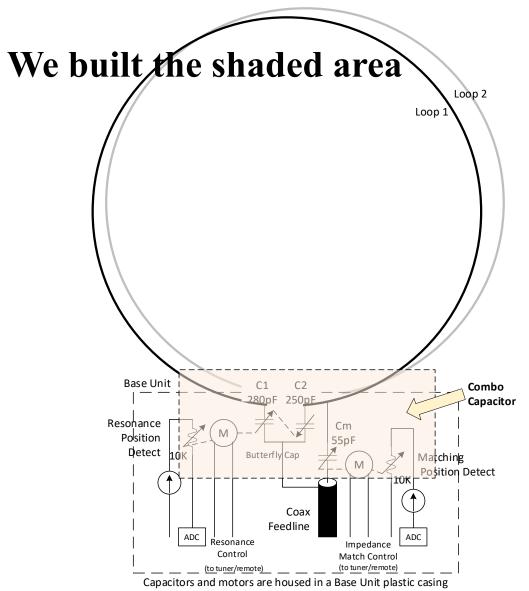
- Combination Variable Capacitor is a required part of the matching system of Desltop MLA
- Ready-made part is not available in the market place
- The Butterfly Capacitor part is still available to buy from net shops like e-Bay. But...


Motivation (2)

BUT!!

- The inventory seems to be low and freight charge sky-rocketed.
 - 5 plate set costs \$55 + S&H \$50
 If you want to build 20 plate capacitor, it costs \$620!
- And the kit does not include the smaller Matching Capacitor.
- Southern California group, in order to advance our project to build our own Desktop MLA, searched for a workshop that can laser-cut metal plates to our shape and dimension.
 - Luckily, we found a vendor who would do that, and at an unexpectedly reasonable cost
 - The parts for Resonance and Matching Capacitor plates were built for two units, at \$117.
 - The large part of the cost is the set-up charge, so for a larger order, perunit cost can get significantly lower.

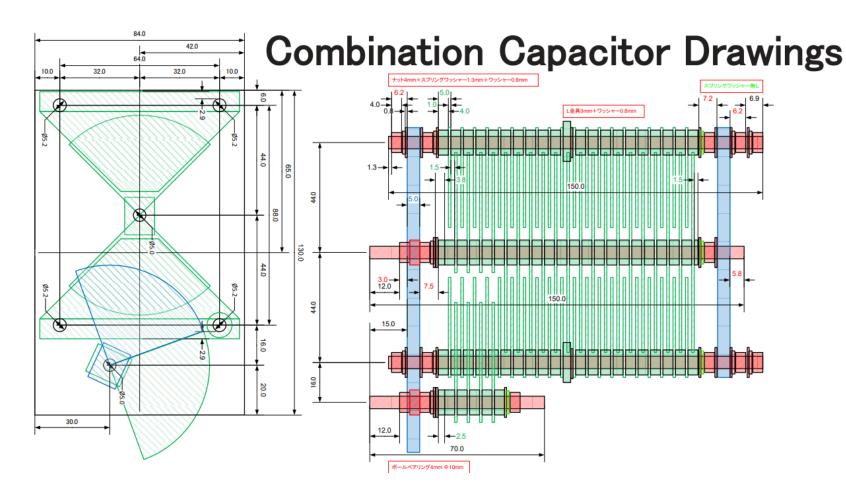
The Vendor's (Xometry.com) Estimate

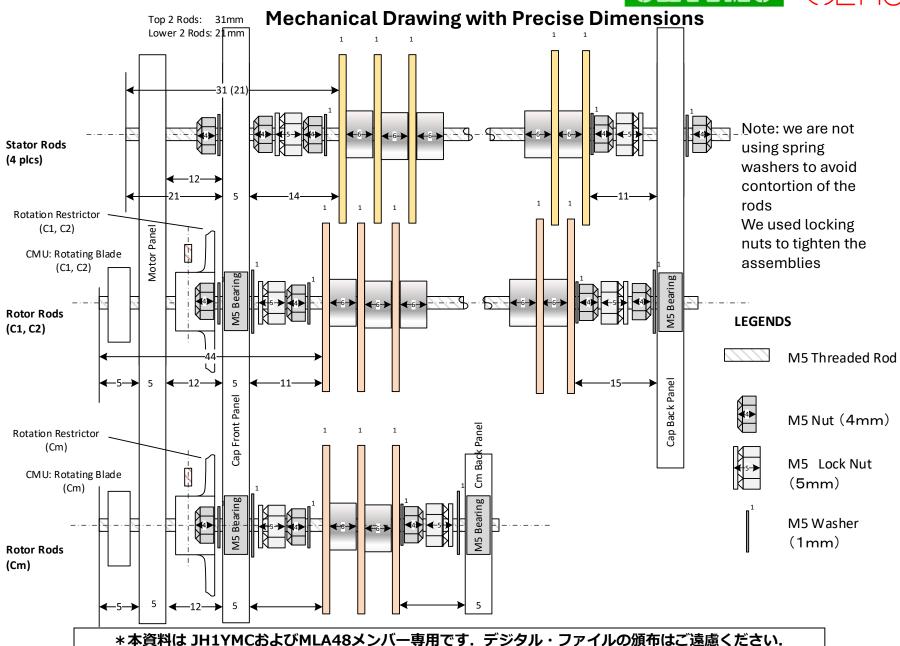

Building it!

- Big hurdle of custom plate availability was overcome, we attempted to prototype the Combination Capacitor.
 - Many custom parts (except for the key hardware) were built using the
 3d printer
 - PLA filament is too soft for the purpose
 - PETG can build a reasonably solid parts
 - PC, CF can also be used, but they are higher cost and high maintenance.
 - Metal hardware is ordered out, but the cost and availability become can become issue.

The machining precision (especially thickness) is extremely important

- Spacers
- M5 Hardware
- · Washers, etc.
- CMU (Capacitor Motorization Unit Home made)
- Several obstacles became apparent as building effort commenced
 We'll share some of them in this presentation





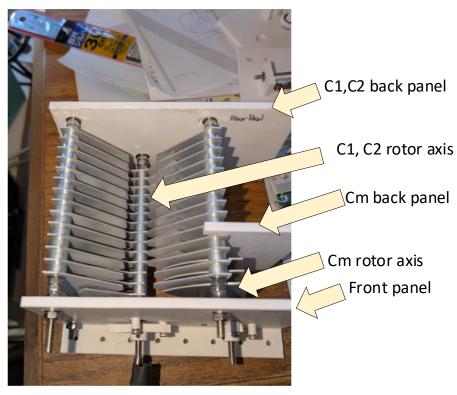
Combination Capacitor Drawings

Referenced from Mr. Uchida / JG1CCL's "HHE-122 Butterfly Capacitor Project" (Showing the concept, but is NOT the same thing we are building)

Overview of the Assembled Components

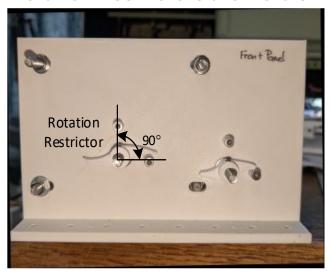
Rotor Assembly
Three blades are cut off on C2 side

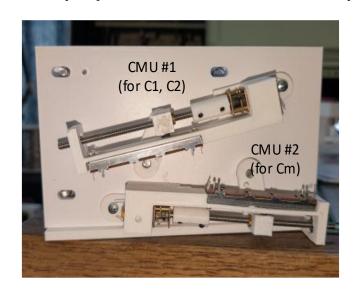
Overview from the top
The Matching Capacitor on the right side



From the left: Cm (Matching Capacitor) Rotor Assembly C1, C2 Rotor Assembly Stator Assembly

Prototype Overview (1)

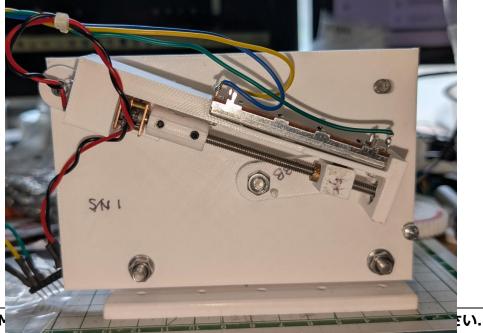




Prototype Overview (2)

Front Panel (before Motor Panel is attached)
Rotation Restrictors are visible

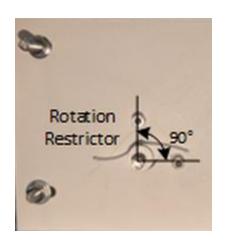
Mounting Motor Panel over the Front Panel with CMU's (Capacitor Motorization Units)



CMU (Capacitor Motorization Unit)

- Developed a motorization mechanism for the capacitor as an integral component
 - Very similar to JR10AO's Desktop MLA system, but built with custom 3-d printed components
 - We are not a craftsmen of Mr. Nakajima's level
 - Due to lack of metal parts availability (he build one himself)
 - Some innovation was needed since plastic parts do not have stiffness of metal parts

As a result, the unit became a bit larger than Desktop


counterpart

Rotation Restrictor

- Obviously, if you turn a capacitor 360 degree, capacitance increases, then decreases, increases again, on every 90 degree turn
- Without knowing the current orientation of the blades, opposite reaction to the matching network can occur.
 - It may be survivable for one-off project, if you build multiple units, it is important to set the initial conditions for CMU position, capacitor.
- On this project, we added a restrictor to the rotation axis of the rotor so it can only turn 90 degree.

 Pay attention to the angles / orientation or Cm and C2 blades.
 Or they can short each other.

About Spacer

- Due to cost and availability concern, 6mm spacers were used.
 - Desktop MLA uses 4mm spacer
 - Using 6mm can reduce the capacitance by 40% per blade
- There is a limit on the pre-cut lengths of threaded rods
 - The maximum length for pre-cut rods is 190mm
 Longer than that, one must cut stainless steel himself (NO).
 - It can only accommodate up to 14 blades, while Desktop MLA uses 20 blades.
 - That reduces the total capacitance by 30%, on top of reduced perblade capacitance above
- Consequently, this prototype yields only 100pF per section
 - That can tune down only to 21MHz band
 - Desktop boasts up to 250pF per section to reach down to 7MHz
- Currently searching for the source for 4 or 5mm spacer
 - They are more expensive. Spacer is one of the most costly parts!

The Concern with 4mm Spacer

- Generally, zap immunity of air gap is said to be about 3KV/mm
- 4mm spacer gives blade-to-blade gap of 1.5mm
 - That gives up to 4.5KV high voltage immunity, **theoretically**.
 - 100W transmission on a loop with 1m diameter can generate more than 4KV at feed point gap at 7MHz
 - But C1 and C2 are connected series, so actual voltage across capacitor blades are half of that amount
- Therefore, 100W transmission on 4mm spacer is safe, but just barely.
 - This is assuming the rotor stator gap is perfectly aligned.
 Any amount of variations can threaten the safety.
- ONE MUST BUILD IT VERY CAREFULLY!
- Mr. Nakajima suggested we can increase the HV immunity by 20% if we insulate the rotor blades.
 - (MLA-48 reported on that about a year ago)

Homework

- Achieve higher capacitance (over 200pF)
 - Use 4mm Spacer?
 - Increase the number of blades
 - Insulating rotor blades
- Develop a technique to connect the capacitor stator electrode to the MLA feed point directly
 - This is based on MLA-48 research about the high concentration of RF current at the middle of stator electrode. Objective is to increase Q and efficiency
- We are open to provide support for those willing to work to build for themselves
 - We can provide drawings and 3d files developed for this project, free of charge.
 - Drawings are made using freeCad.
 .step, .stl files can be provided
- At this time, we are not planning to distribute physical material
 - That can change, but will take time to get there

Partial Bill of Material (incomplete, sorry)

Combo Butterfly Cap Parts List		9/3/2025				
A1 ' D1 (IZ')	C1 C2 P	20	\$			
Alminum Plate Kit	C1-C2 Rotor	20	11.00			
	C1-C2 Stator	40	\$ 22.00			
			\$			
	Cm Rotor	4	2.75			
			\$			
Spacer, M5, 6mm, Al	need 84	100	57.60			
Face Plates	90mm x 115mm x 5mm	2	CMU	needs 2 for each Combo	Cap	
bearing, M5	need 3	16	CMU body	3d print, PHAT_CMU-r06		
Threaded Rod, M5 150mm	need 5	5	CMU slider	3d print, PHAT CMU-Slider-r05		
			CMU swing blade	3d print, PHAT_CMU_SwingBlade-r03B		r03B
T.1 1. 1 D . 1 M5 70	11	1	shaft coupler 3d print, PHAT CMU ShaftCoupler-r0			
Trheaded Rod, M5 70mm		100	î		Î	\$
Nuts, M5, 3mm	need 28	100	DC motor, 150rpm	need 1	3	10.57
Nylon Locking Nuts	M5, need 8	27	M4 threaded inserts	need 1	50	
Washers	M5	100				\$
Construct Western	N/5	(M4 threaded rod, 80mm	need 1	15	0.94
Spring Washers	M5	6	Slider VR, 10K B 63mm	need 1	5	
Terminal Lugs	10 AWG stud	6				\$
Nylon Spacer M5 20mm			M3 set screw, 4mm	need 4	100	0.34
			M4 shaft bearing	need 1	6	
						\$
			M2 hex screw, 5mm	need 2	120	0.94
			C. ili 4 4 25	11	20	\$
			Coil spring, .4 x 4 x 35mm	need I	20	1.23